3.365 \(\int \frac{\sqrt{d+e x^2}}{x^4 (a+b x^2+c x^4)} \, dx\)

Optimal. Leaf size=373 \[ \frac{c \left (\frac{-a b e-2 a c d+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{c \left (-\frac{-a b e-2 a c d+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{\sqrt{b^2-4 a c}+b} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{\sqrt{d+e x^2} (b d-a e)}{a^2 d x}+\frac{2 e \sqrt{d+e x^2}}{3 a d x}-\frac{\sqrt{d+e x^2}}{3 a x^3} \]

[Out]

-Sqrt[d + e*x^2]/(3*a*x^3) + (2*e*Sqrt[d + e*x^2])/(3*a*d*x) + ((b*d - a*e)*Sqrt[d + e*x^2])/(a^2*d*x) + (c*(b
*d - a*e + (b^2*d - 2*a*c*d - a*b*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sq
rt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a
*c])*e]) + (c*(b*d - a*e - (b^2*d - 2*a*c*d - a*b*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4
*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e])

________________________________________________________________________________________

Rubi [A]  time = 2.52711, antiderivative size = 373, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 7, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.241, Rules used = {1295, 271, 264, 6728, 1692, 377, 205} \[ \frac{c \left (\frac{-a b e-2 a c d+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{c \left (-\frac{-a b e-2 a c d+b^2 d}{\sqrt{b^2-4 a c}}-a e+b d\right ) \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{\sqrt{b^2-4 a c}+b} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{\sqrt{d+e x^2} (b d-a e)}{a^2 d x}+\frac{2 e \sqrt{d+e x^2}}{3 a d x}-\frac{\sqrt{d+e x^2}}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x^2]/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

-Sqrt[d + e*x^2]/(3*a*x^3) + (2*e*Sqrt[d + e*x^2])/(3*a*d*x) + ((b*d - a*e)*Sqrt[d + e*x^2])/(a^2*d*x) + (c*(b
*d - a*e + (b^2*d - 2*a*c*d - a*b*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sq
rt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a
*c])*e]) + (c*(b*d - a*e - (b^2*d - 2*a*c*d - a*b*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4
*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e])

Rule 1295

Int[(((f_.)*(x_))^(m_)*((d_.) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Dist[d/
a, Int[(f*x)^m*(d + e*x^2)^(q - 1), x], x] - Dist[1/(a*f^2), Int[((f*x)^(m + 2)*(d + e*x^2)^(q - 1)*Simp[b*d -
 a*e + c*d*x^2, x])/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] &&  !In
tegerQ[q] && GtQ[q, 0] && LtQ[m, 0]

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rule 1692

Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandInteg
rand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x^2] && NeQ[b
^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x^2}}{x^4 \left (a+b x^2+c x^4\right )} \, dx &=-\frac{\int \frac{b d-a e+c d x^2}{x^2 \sqrt{d+e x^2} \left (a+b x^2+c x^4\right )} \, dx}{a}+\frac{d \int \frac{1}{x^4 \sqrt{d+e x^2}} \, dx}{a}\\ &=-\frac{\sqrt{d+e x^2}}{3 a x^3}-\frac{\int \left (\frac{b d-a e}{a x^2 \sqrt{d+e x^2}}+\frac{-b^2 d+a c d+a b e-c (b d-a e) x^2}{a \sqrt{d+e x^2} \left (a+b x^2+c x^4\right )}\right ) \, dx}{a}-\frac{(2 e) \int \frac{1}{x^2 \sqrt{d+e x^2}} \, dx}{3 a}\\ &=-\frac{\sqrt{d+e x^2}}{3 a x^3}+\frac{2 e \sqrt{d+e x^2}}{3 a d x}-\frac{\int \frac{-b^2 d+a c d+a b e-c (b d-a e) x^2}{\sqrt{d+e x^2} \left (a+b x^2+c x^4\right )} \, dx}{a^2}-\frac{(b d-a e) \int \frac{1}{x^2 \sqrt{d+e x^2}} \, dx}{a^2}\\ &=-\frac{\sqrt{d+e x^2}}{3 a x^3}+\frac{2 e \sqrt{d+e x^2}}{3 a d x}+\frac{(b d-a e) \sqrt{d+e x^2}}{a^2 d x}-\frac{\int \left (\frac{-c (b d-a e)-\frac{c \left (b^2 d-2 a c d-a b e\right )}{\sqrt{b^2-4 a c}}}{\left (b-\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}}+\frac{-c (b d-a e)+\frac{c \left (b^2 d-2 a c d-a b e\right )}{\sqrt{b^2-4 a c}}}{\left (b+\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}}\right ) \, dx}{a^2}\\ &=-\frac{\sqrt{d+e x^2}}{3 a x^3}+\frac{2 e \sqrt{d+e x^2}}{3 a d x}+\frac{(b d-a e) \sqrt{d+e x^2}}{a^2 d x}+\frac{\left (c \left (b d-a e-\frac{b^2 d-2 a c d-a b e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\left (b+\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}} \, dx}{a^2}+\frac{\left (c \left (b d-a e+\frac{b^2 d-2 a c d-a b e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\left (b-\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}} \, dx}{a^2}\\ &=-\frac{\sqrt{d+e x^2}}{3 a x^3}+\frac{2 e \sqrt{d+e x^2}}{3 a d x}+\frac{(b d-a e) \sqrt{d+e x^2}}{a^2 d x}+\frac{\left (c \left (b d-a e-\frac{b^2 d-2 a c d-a b e}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+\sqrt{b^2-4 a c}-\left (-2 c d+\left (b+\sqrt{b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )}{a^2}+\frac{\left (c \left (b d-a e+\frac{b^2 d-2 a c d-a b e}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b-\sqrt{b^2-4 a c}-\left (-2 c d+\left (b-\sqrt{b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )}{a^2}\\ &=-\frac{\sqrt{d+e x^2}}{3 a x^3}+\frac{2 e \sqrt{d+e x^2}}{3 a d x}+\frac{(b d-a e) \sqrt{d+e x^2}}{a^2 d x}+\frac{c \left (b d-a e+\frac{b^2 d-2 a c d-a b e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e} x}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}}+\frac{c \left (b d-a e-\frac{b^2 d-2 a c d-a b e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e} x}{\sqrt{b+\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{a^2 \sqrt{b+\sqrt{b^2-4 a c}} \sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}}\\ \end{align*}

Mathematica [B]  time = 6.40871, size = 7777, normalized size = 20.85 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[d + e*x^2]/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C]  time = 0.03, size = 322, normalized size = 0.9 \begin{align*} -{\frac{b}{{a}^{2}}\sqrt{e}\ln \left ( \sqrt{e{x}^{2}+d}-\sqrt{e}x \right ) }+{\frac{1}{2\,{a}^{2}}\sqrt{e}\sum _{{\it \_R}={\it RootOf} \left ( c{{\it \_Z}}^{4}+ \left ( 4\,be-4\,cd \right ){{\it \_Z}}^{3}+ \left ( 16\,a{e}^{2}-8\,deb+6\,c{d}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,b{d}^{2}e-4\,c{d}^{3} \right ){\it \_Z}+c{d}^{4} \right ) }{\frac{c \left ( ae-bd \right ){{\it \_R}}^{2}+2\, \left ( 2\,ab{e}^{2}+acde-2\,{b}^{2}de+bc{d}^{2} \right ){\it \_R}+e{d}^{2}ca-bc{d}^{3}}{{{\it \_R}}^{3}c+3\,{{\it \_R}}^{2}be-3\,{{\it \_R}}^{2}cd+8\,{\it \_R}\,a{e}^{2}-4\,{\it \_R}\,bde+3\,{\it \_R}\,c{d}^{2}+b{d}^{2}e-c{d}^{3}}\ln \left ( \left ( \sqrt{e{x}^{2}+d}-\sqrt{e}x \right ) ^{2}-{\it \_R} \right ) }}+{\frac{b}{{a}^{2}dx} \left ( e{x}^{2}+d \right ) ^{{\frac{3}{2}}}}-{\frac{bex}{{a}^{2}d}\sqrt{e{x}^{2}+d}}-{\frac{b}{{a}^{2}}\sqrt{e}\ln \left ( \sqrt{e}x+\sqrt{e{x}^{2}+d} \right ) }-{\frac{1}{3\,ad{x}^{3}} \left ( e{x}^{2}+d \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(1/2)/x^4/(c*x^4+b*x^2+a),x)

[Out]

-1/a^2*e^(1/2)*b*ln((e*x^2+d)^(1/2)-e^(1/2)*x)+1/2/a^2*e^(1/2)*sum((c*(a*e-b*d)*_R^2+2*(2*a*b*e^2+a*c*d*e-2*b^
2*d*e+b*c*d^2)*_R+e*d^2*c*a-b*c*d^3)/(_R^3*c+3*_R^2*b*e-3*_R^2*c*d+8*_R*a*e^2-4*_R*b*d*e+3*_R*c*d^2+b*d^2*e-c*
d^3)*ln(((e*x^2+d)^(1/2)-e^(1/2)*x)^2-_R),_R=RootOf(c*_Z^4+(4*b*e-4*c*d)*_Z^3+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^2+
(4*b*d^2*e-4*c*d^3)*_Z+c*d^4))+1/a^2*b/d/x*(e*x^2+d)^(3/2)-1/a^2*b*e/d*x*(e*x^2+d)^(1/2)-1/a^2*b*e^(1/2)*ln(e^
(1/2)*x+(e*x^2+d)^(1/2))-1/3/a/d/x^3*(e*x^2+d)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x^{2} + d}}{{\left (c x^{4} + b x^{2} + a\right )} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/x^4/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x^2 + d)/((c*x^4 + b*x^2 + a)*x^4), x)

________________________________________________________________________________________

Fricas [B]  time = 75.0038, size = 8227, normalized size = 22.06 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/x^4/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

1/12*(3*sqrt(1/2)*a^2*d*x^3*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e - (
a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b
^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))
/(a^5*b^2 - 4*a^6*c))*log(((a^5*b^2*c^2 - 4*a^6*c^3)*d*x^2*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2
*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a
^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)) + 2*(a*b^4*c^2 - 3*a^2*b^2*c^3 + a^3*c^4)*d^2 - 2*(a^2*b^3*c^2 - 2*a^3
*b*c^3)*d*e - ((b^5*c^2 - 3*a*b^3*c^3 + a^2*b*c^4)*d^2 - (5*a*b^4*c^2 - 14*a^2*b^2*c^3 + 4*a^3*c^4)*d*e + 4*(a
^2*b^3*c^2 - 2*a^3*b*c^3)*e^2)*x^2 + 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*x*sqrt((
(b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*
a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)) + ((a*b^7 - 7*a^2*b^5*c +
 13*a^3*b^3*c^2 - 4*a^4*b*c^3)*d - (a^2*b^6 - 6*a^3*b^4*c + 8*a^4*b^2*c^2)*e)*x)*sqrt(-((b^5 - 5*a*b^3*c + 5*a
^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e - (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^
2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^
3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c)))/x^2) - 3*sqrt(1/2)*a^2*d*x^3*sqrt(
-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e - (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6
*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^
3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(((a^5*b
^2*c^2 - 4*a^6*c^3)*d*x^2*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 -
5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^
11*c)) + 2*(a*b^4*c^2 - 3*a^2*b^2*c^3 + a^3*c^4)*d^2 - 2*(a^2*b^3*c^2 - 2*a^3*b*c^3)*d*e - ((b^5*c^2 - 3*a*b^3
*c^3 + a^2*b*c^4)*d^2 - (5*a*b^4*c^2 - 14*a^2*b^2*c^3 + 4*a^3*c^4)*d*e + 4*(a^2*b^3*c^2 - 2*a^3*b*c^3)*e^2)*x^
2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*x*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2
 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3
*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)) + ((a*b^7 - 7*a^2*b^5*c + 13*a^3*b^3*c^2 - 4*a^4*b*c^3)*d
- (a^2*b^6 - 6*a^3*b^4*c + 8*a^4*b^2*c^2)*e)*x)*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*
c + 2*a^3*c^2)*e - (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2
- 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^
10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c)))/x^2) + 3*sqrt(1/2)*a^2*d*x^3*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)
*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e + (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3
*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c +
 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(-((a^5*b^2*c^2 - 4*a^6*c^3)*d*x^2*sqrt((
(b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*
a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)) - 2*(a*b^4*c^2 - 3*a^2*b^
2*c^3 + a^3*c^4)*d^2 + 2*(a^2*b^3*c^2 - 2*a^3*b*c^3)*d*e + ((b^5*c^2 - 3*a*b^3*c^3 + a^2*b*c^4)*d^2 - (5*a*b^4
*c^2 - 14*a^2*b^2*c^3 + 4*a^3*c^4)*d*e + 4*(a^2*b^3*c^2 - 2*a^3*b*c^3)*e^2)*x^2 + 2*sqrt(1/2)*sqrt(e*x^2 + d)*
((a^6*b^4 - 6*a^7*b^2*c + 8*a^8*c^2)*x*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2
- 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^
10*b^2 - 4*a^11*c)) - ((a*b^7 - 7*a^2*b^5*c + 13*a^3*b^3*c^2 - 4*a^4*b*c^3)*d - (a^2*b^6 - 6*a^3*b^4*c + 8*a^4
*b^2*c^2)*e)*x)*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e + (a^5*b^2 - 4*
a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3
*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 -
4*a^6*c)))/x^2) - 3*sqrt(1/2)*a^2*d*x^3*sqrt(-((b^5 - 5*a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^
3*c^2)*e + (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b
^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 -
 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(-((a^5*b^2*c^2 - 4*a^6*c^3)*d*x^2*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^
2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^
3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)) - 2*(a*b^4*c^2 - 3*a^2*b^2*c^3 + a^3*c^4)*d^2 + 2*(a^2*b^
3*c^2 - 2*a^3*b*c^3)*d*e + ((b^5*c^2 - 3*a*b^3*c^3 + a^2*b*c^4)*d^2 - (5*a*b^4*c^2 - 14*a^2*b^2*c^3 + 4*a^3*c^
4)*d*e + 4*(a^2*b^3*c^2 - 2*a^3*b*c^3)*e^2)*x^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^6*b^4 - 6*a^7*b^2*c + 8*a^8*
c^2)*x*sqrt(((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3
*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)) - ((a*b^7 -
7*a^2*b^5*c + 13*a^3*b^3*c^2 - 4*a^4*b*c^3)*d - (a^2*b^6 - 6*a^3*b^4*c + 8*a^4*b^2*c^2)*e)*x)*sqrt(-((b^5 - 5*
a*b^3*c + 5*a^2*b*c^2)*d - (a*b^4 - 4*a^2*b^2*c + 2*a^3*c^2)*e + (a^5*b^2 - 4*a^6*c)*sqrt(((b^8 - 6*a*b^6*c +
11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)*d^2 - 2*(a*b^7 - 5*a^2*b^5*c + 7*a^3*b^3*c^2 - 2*a^4*b*c^3)*d*e + (a
^2*b^6 - 4*a^3*b^4*c + 4*a^4*b^2*c^2)*e^2)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c)))/x^2) + 4*((3*b*d - a*
e)*x^2 - a*d)*sqrt(e*x^2 + d))/(a^2*d*x^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(1/2)/x**4/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/x^4/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: TypeError